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Abstract

Advancements in single-cell multi-omic sequencing has enabled new innovative approaches for deciphering

the intricate relationship between chromatin structure and gene expression. In this paper, we present a

novel application of Graph Neural Networks (GNNs) to predict gene expression patterns based on RNA

sequencing using Hi-C chromatin structure data. Leveraging the inherent graph representation of chromatin

interactions, we employ Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) to

model the complex dependencies among genes. Our results demonstrate the ability of GNNs to capture

the spatial organization and regulatory dynamics within the genome. In particular, we consider an inter-

chromosomal mouse gene network responsible for ectoderm and mesoderm differentiation during embryonic

development, and showcase our model’s capability to predict coexpression of these genes with high accuracy.

This work establishes a powerful framework for integrating chromatin structure data into predictive models,

offering a deeper understanding of the regulatory mechanisms governing gene expression and paving the way

for advancements in personalized genomics and therapeutic interventions.
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Introduction

In multicellular organisms, distinct cell types possess genomes

that are virtually the same, yet they exhibit significant differences

in structure and function. Establishing varied cell identities

throughout an organism’s development entails regulating the gene

expression, which includes the three-dimensional (3D) spatial

interactions of chromatin in the nucleus [8]. For example, the

locus control region (LCR) interacts with β-type globin genes in

a stage-specific way during development, regulating transcription

in erythroid cells [5]. Disruptions in the 3D organization of

the genome have been linked to the emergence of numerous

diseases, such as cancer, and mutations in IDH contribute to

the development of gliomas by altering the chromosomal topology

and enabling abnormal regulatory interactions that lead to the

activation of oncogenes [7]. Despite this, the dynamic nature of the

relationship between 3D genomic structure and gene expression

is still a subject of debate. Substantial alterations in the 3D

genome structure can be induced by the selective degradation of

crucial regulatory proteins like CCCTC-binding factor (CTCF)

or cohesin, yet these changes have only a slight effect on gene

expression [13, 15]. In the embryos of Drosophila, while various

cell types exhibit marked variations in gene expression, differences

in chromatin structure are relatively minor [9].

RNA sequencing (RNA-Seq) is a sequencing technique to

catalog and quantify gene expression on the transcriptome

level across cells. Single-cell RNA sequencing (scRNA-Seq)

extends these capabilities to the individual cell level. ScRNA-

Seq generally has several steps: isolation of single cells, cell lysis,

reverse transcription of RNA into cDNA, cDNA amplification

by polymerase chain reaction (PCR), cDNA library generation,

high-through put DNA sequencing and data analysis [18]. It is

frequently used for cell type characterization and inferring gene

regulatory networks.

Hi-C captures the 3D chromatin conformation, which helps

to unravel how spatial organization of genomes and interactions

between genomic regions affect gene expression and functions

of cells. Hi-C is based on chromosome conformation capture

(3C) assays, with recent extensions involving 4C (chromosome

conformation capture-on-chip/circular chromosome conformation

capture), and 5C (chromosome conformation capture carbon

copy). Single-cell Hi-C (scHi-C) extends these capabilities to

capturing chromatin interactions of individual cell rather than

in bulk, thus enabling deciphering of cell-to-cell variation

in chromosome structures. The process of scHi-C includes

isolation of single cells, cross-linking of DNA-DNA interactions

bridged by proteins using formaldehyde, cell lysis, chromatin

digestion, ligation of proximal ends, reversal of crosslinking,
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DNA purification, library preparation, sequencing. Subsequently,

contact map are generated by binning [2].

Despite this, naively combining independent scRNA-seq and

scHi-C data has a significant drawback in its inability to control

for variation across cell stages and cell sub-types. Development

in single-cell multi-omics sequencing techniques have facilitated

the simultaneous profiling of the transcriptome alongside other

biological features, such as protein levels, DNA methylation and

chromatin accessibility. These advancements have significantly

enhanced our comprehension of how cells determine their fate

at the molecular level [1, 3]. Among these single-cell multi-omics

techniques, a long-lasting gap has been the absence of a method

to simultaneously obtain chromatin conformation data.

In 2023, Xing et al. [12] reported a new technique, HiRES

(Hi-C and RNA-seq employed simultaneously), allowing the

simultaneous profiling of transcriptome and 3D genome at the

single-cell level (Figures 1, 2). The assay is detailed in [4]. After

cell fixation and permeabilization, in-situ reverse transcription was

performed, followed by a 3C procedure. Digestion and ligation

were conducted, and cells were flow sorted and underwent quasi-

linear amplification by several cycles of annealing and looping in

a single-tube setup. After sequencing, the cDNA sequences were

identified using the mRNA-specific tag added during the reverse

transcription. A total of 432 single cells from adult mouse brain

and 7716 single cells from F1 hybrid mouse embryos (C57BL/6J

× CAST/EiJ) collected between embryonic day 7.0 (E7.0) and

E11.5 were used to explore the relationship between genome

organization and gene expression. The authors also suggested

that rewiring of chromatin interactions prior to gene expression

typically occurs in regions of active chromatin. For genes situated

within repressed chromatin areas, condensed chromatin relaxation

takes place before transcription activation. The pseudo-temporal

relationship between chromatin conformation and transcriptome

was also investigated, via pseudotime inference and residual

analysis measuring the difference of gene-associated differential

interactions (DI) and gene expression level.

In this work, we aim to extend the HiRES method to

predict gene expression levels and co-expressed genes using Hi-

C data by leveraging powerful deep learning tools including

graph convolution and graph attention networks. We demonstrate

the effectiveness of our method via a case study using several

genes involved in ectoderm and mesoderm differentiation across

multiple chromosomes, showing that our model can predict the

coexpression of these genes with high accuracy.

Data Preprocessing

Hi-C

Hi-C data (.pairs format) was retrieved from Gene Expression

Omnibus (accession no. GSE223917) and converted to .hic via

Juicer tools pre with parameters mm10 -r 100000,500000,1000000.

This corresponds to reference genome mm10, resolutions at 100Kb,

500Kb and 1Mb, and default normalization vectors (VC, VC_SQRT,

KR, SCALE). Using the specified MLP model (Section 3.1), we

performed a grid-search across different Hi-C parameters and

optimized to observed counts with KR normalization, which was

used for all subsequent analysis.

Fig. 1: HiRES enables the simultaneous profiling of transcriptomes

and 3D genome structure. The workflow of HiRES is shown.

Adapted from [12]

.

RNA-seq

RNA-seq data was retrieved from Gene Expression Omnibus

(accession no. GSE223917), corresponding to two preprocessed

files [12]:

1. GSE223917 HiRES brain.rna.umicount.tsv.gz

2. GSE223917 HiRES emb.rna.umicount.tsv.gz

Each dataset was subsequently merged with:

1. metadata (GSE223917 HiRES brain metadata.xlsx,

GSE223917 HiRES emb metadata.xlsx, respectively) in order

to generate datasets across different cell stages (e.g., E7) and

2. a genebank file generated from BioMart (mm391 with

attributes for gene start, gene end, chromosome, gene name,

gene symbol and MGI symbol).

Genes with a match to either gene name, gene symbol, or MGI

symbol were used as the final set, resulting in a 96% (48, 461 /

50, 463) match with the genes in the RNA-seq data.

Neural Network Models

In recent years, neural networks have emerged as powerful tools

to unravel the complexities of biological data. Deep learning

has been leveraged to extract meaningful patterns from genomic,

proteomic, and other omic data [6]. Neural networks are capable of

learning highly nonlinear patterns in the input data, making them

particularly suited for complex tasks such as prediction of gene

expression. This paper explores three categories of neural network

1 Despite the disparity of reference genome between RNA-seq and
Hi-C data (mm39 vs mm10), there is no effect on the model

performance. This is due to the units for the training and testing

data being discrete genes rather than fixed bin sizes.
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Fig. 2: Single-cell Hi-C (structure) and RNA-seq (function) studies

have previously been used to investigate embryonic development

[16, 14], but suffered from a lack of temporal precision between

samples: single-cell Hi-C or RNA-seq samples may be drawn from

two different time points (left), whereas simultaneous profiling of

single-cell studies (right) controls this variability and ensures that

data is identically and independently distributed.

models for this task: multilayer perceptrons, graph convolutional

networks, and graph attention networks.

Multilayer Perceptrons

The multilayer perceptron (MLP) is one of the simplest of neural

network architectures, and is inspired by the interconnected nature

of biological neurons in the brain. A MLP consists of multiple

layers, where each layer performs a linear transformation of the

input followed by a nonlinear activation function. The MLP

architecture used in this work is depicted in Figure 3 (left). We

use five fully-connected layers, with ReLU activation and Dropout

following each but the last layer. Since the features in an MLP

must be one-dimensional, we flatten the adjacency matrix as input

to the model. The model outputs a Nd size vector for each sample,

where Nd is the number of genes we would like to predict.

Graph Convolution Networks

Graph Convolutional Networks (GCNs) are another type of neural

network specifically designed to handle structured data in the form

of graphs, where nodes represent Hi-C contact regions and edges

represent the interaction between regions. GCNs excel in capturing

spatial interactions between features by aggregating information

from neighboring nodes for each node in the graph. Each graph

convolutional layer computes a weighted sum of features from

neighboring nodes, where the weights are determined by the

interactions between nodes (edges in the graph). For each feature

Hyperparameter MLP GCN GAT

Batch Size 64 8 8

Learning Rate 5× 10−4 1× 10−4 1× 10−4

Hidden Layers 4 5 4

Dropout Prob 0.5 0.5 0.5

Table 1. Hyperparameter values used for the different models.

vector h
(l)
i of node i at layer l, the graph convolutions compute

h
(l+1)
i = σ

 ∑
j∈nbhd(i)

1

cij
W (l)h

(l)
j

 (1)

where nbhd(i) denotes the neighboring nodes of node i, W (l) is

the weight matrix at layer l, σ is an activation function, and cij
is a normalization constant [11].

Our GCN architecture is shown in Figure 3 (left). We employ

five graph convolutional layers to extract node embeddings from

the input graph, followed by our previous MLP model to perform

the regression.

Graph Attention Networks

Inspired by the concept of attention in natural language

processing, Graph Attention Networks (GATs) utilize the powerful

attention mechanism to selectively weigh the importance of

different neighbors when aggregating information from the nodes

of a graph [17]. The attention coefficients αij between nodes i and

j are computed as

αij =
exp(σ(a⊤[Whi||Whj ]))∑

k∈nbhd(i) exp(σ(a
⊤[Whi | Whk]))

(2)

where hi is the feature representations of node i, W is the

weight matrix, a is a learnable weight vector, || denotes

concatenation, and σ is an activation function. This mechanism

allows nodes to selectively attend to relevant neighbors during

the information aggregation process, allowing for more flexible

and adaptive modeling of complex relationships within graph-

structured data. This adaptability is particularly beneficial in

scenarios like biological networks, where nodes may have varying

degrees of importance and connectivity.

Our GAT architecture is identical to the GCN, only with graph

attention layers instead of graph convolution. Because our Hi-C

data has no features other than the graph structure, for the graph-

based models we use the degree of each node as its feature. We

perform a grid search optimization to guide model architecture

and hyperparameter selection. The chosen hyperparameters are

given in Table 1.

Experiments

Predicting Frequently Expressed Genes

To guide subsequent model development, we first experiment with

training simple models on chromosomes 6 and 17 to predict the 10

most frequently expressed genes on those chromosomes. We train

each model using the Hi-C data at 1Mb resolution for 50 epochs.

A comparison of the performance for the different architectures

is shown in Figure 4. The GCN and GAT models exhibit more

stability in training and better performance than the MLP, but
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Fig. 3: Left: the MLP model architecture. We use five fully-

connected layers with ReLU activation and dropout between each

layer. Right: the GCN model architecture. We use five graph

convolution layers to get node embeddings followed by the MLP

model for regression. The GAT model is similar, with graph

attention layers instead of convolution.

are roughly equal to each other. We suspect this similarity is

due to the node structure in our graphs being relatively static,

mitigating one of the biggest advantages GATs have over GCNs.

We also experimented with normalizing the Hi-C data matrix and

using different resolutions. However, these did not improve the

performance, and so were not considered further.

Developmental Layers: Ectoderm and Mesoderm

Our initial experiments have shown that there are structural

patterns in the Hi-C data that can be exploited to predict

expression of arbitrary genes. We now turn our attention to

predicting the expression of a network of genes that encode for

a particular biological function. In particular, we aim to predict

a subset of genes that are responsible for encoding ectoderm and

mesoderm differentiation markers. We used the Mouse Genome

Informatics repository of Gene Ontology Annotations to query

for ectoderm and mesoderm specific genes.

Since our aim is to investigate diverging developmental

layers across embryonic development, we combined the sets

of genes together and generated an interaction confidence

network on String-DB 5. Interestingly, sub-graphs with high

edge confidence typically spanned chromosomes, such as Oct4

(chr17), Nanog (chr6), and Sall1 (chr8) [10], which motivated

us to train our models using multiple chromosomes for greater

flexibility in capturing meaningful inter-chromosomal interactions.

Chromosome 17 was selected for Pou5f1 (Oct4 ), a master

Fig. 4: Performance of different architectures on predicting top 10

genes on chromosomes 6 and 17.

regulator of embryonic stem cells, as well as Six2, involved in

embryonic morphogenesis and organ development, chromosome 6

for the Hox gene clusters, implicated in spatial organization along

the anteroposterior body axis and Nanog, and chromosome 11 for

Wnt3a, which plays an important role in mesoderm formation and

the development of the notochord.2 A list of the set of genes used

for model training is given in Table 2.

For this experiment, we train a model on Hi-C data with block

matrices for chromosome 2, 11, and 17 and predict the expression

levels of 24 genes across the three chromosomes. We train both

a GAT and a GCN on this combined data. The validation loss

for both models is shown in Figure 6. The GCN model achieves

a test loss of 0.16676 while the GAT is at 0.16904. Figure 7

highlights randomly selected cells from day 7, day 8.5, and 11.5.

The combined Hi-C matrices for each cell are shown in the top

row, and the true RNA-Seq values along with the predictions

from the GCN model are shown below. There is overall good

correspondence between labels and prediction. However, across

time, the model predictions are similar, unable to capture the

2 Including chromosome 3 was tempting due to the well-known

interaction between Sox2 and Oct4, but was left out as Sox2 was
not listed as markers of ectoderm or mesoderms on MGI.
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Axin1 Axin2 Grb2 Klrg1 Fgf6 Vps52

Nanog Jup Lhx1 Fgf18 Pou5f1 Tcf7

Vps53 Kremen1 Wnt3a Hoxa11 Nog Lrp6

Kdm6b Vps54 Smo Fgf23 Six2 Nf2
Table 2. Genes involved in differentiation of ectoderm and mesoderm.

Genes were taken from MGI Gene Ontology Browser and filtered for

chromosomes 6, 11, and 17 (see 5) for full list.

Fig. 5: (Top) Output of String-DB from marker genes of

mesodermal and ectodermal differentiation processes. Marker

genes were retrieved from MGI Gene Ontology Browser 2 with

searches for mesodermal cell differentiation (GO:0048333)

and ectoderm development (GO:0048333) yielding 36 and

19 markers, respectively. Nodes are overlaid with chromosome

number and coloured according to functional groups identified

from [12]: red and blue represent mesoderm and ectoderm

differentiation markers, respectively. (Bottom) UMAP plots across

time from Figure 2C [12].

temporal dependencies (e.g., consider Smo expressing in E7 but

suppressed in E8.5). This may be due to the sparsity of the single-

cell Hi-C contact maps despite a low resolution of 1Mb. This also

highlights a limitation with our current model in that time is not

explicitly taken into account. The training process pools together

all samples and so the model effectively learns a conserved Hi-C to

RNA-seq mapping rather than one which can effectively capture

the progression of embryonic development. A possible approach

may be to utilize a recurrent neural network.

Conclusion

Our work demonstrates the potential of using Graph Neural

Networks for predicting gene expression from chromatin structure.

Fig. 6: Validation loss for GCN and GAT models for predicting

differentiation genes across chromosomes 2, 11, and 17.

By exploiting the graph structure inherent in Hi-C data, powerful

GNNs like Graph Convolutional Networks and Graph Attention

Networks exhibit a remarkable capacity to capture complex

relationships and dependencies among genes. Through their ability

to consider the connectivity patterns within gene regulatory

networks, GNNs offer a nuanced approach to modeling the

multifaceted dynamics of gene expression. The adaptability of

attention mechanisms in GATs and the hierarchical learning

capabilities of GCNs enable these models to discern structural

patterns that might be elusive to traditional approaches. Despite

the promise of graph-based models in capturing structural

interactions, fully leveraging time-series data requires a better

suited architecture with explicit modelling of time in order

to capture the dynamics of chromatin structure and function.

Nevertheless, the integration of GNNs into the realm of predicting

gene expression marks a significant stride toward unraveling

the complexities of the genomic landscape and holds immense

promise for advancing our understanding of biological systems and

informing personalized therapeutic strategies.
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