Software Prefetch for Accelerating GPU Programs

Shreyas Chandrashekaran
University of Michigan
shreyasc@umich.edu

1 Introduction

Many modern computing systems rely on accelera-
tors to achieve lofty performance and energy effi-
ciency goals. Graphics processing units (GPUs) are
the most commonly used accelerator which lever-
age thread-level parallelism for a variety of scien-
tific computing and machine learning applications.
The ability to perform a section of computation on
a GPU is referred to as GPU offloading.

There are many programming models for GPU
programming, including CUDA and OpenMP.
CUDA is much more popular but requires more
low-level hardware knowledge, as the programmer
must specify the parallel execution configuration
such as the block and thread dimensions as well as
the overall kernel launch. In constrast, OpenMP
requires the programmer to provide only high-level
compiler directives about which regions of the code
to target for parallelization, which are then imple-
mented automatically by the compiler. Compared
to CUDA, OpenMP has a much shorter learning
curve and more portable perfomance [3].

Despite this, writing efficient programs lever-
aging GPU offloading is non-trivial in OpenMP,
as the issue of managing GPU memory transfers
remains the same. Though GPUs are highly opti-
mized for parallel computation, memory transfer
tends to become the performance bottleneck, and
poorly managed data transfers can cause signifi-
cant latencies if not done with care. Additionally,
GPU performance is also limited by memory band-
width which is a significant factor when working
with large volumes of data as in the majority of
scientific programming.

Unified Memory aims to solve these issues by
abstracting the data transfer away from the pro-
grammer and into the hardware. Unified memory
provides a single unified virtual address space be-
tween CPU and GPU memory. Data transfer is
done automatically on-demand, and can even allow

Aakash Patel
University of Michigan
aakashdp@umich.edu

Sawan Patel
University of Michigan
sawanpa@umich.edu

GPU offloading with data that is too large to fit
into GPU memory. However, there are still lim-
itations to unified memory, particularly in cases
where there is a large data volume with low access
rates.

In this work, we investigate the use of GPU data
prefetching to improve the performance of unified
memory in this context. We introduce a compiler-
assisted, automated GPU prefetching scheme us-
ing LLVM and OpenMP for the identification of
fixed-strided memory accesses across input ob-
jects and an experimentally-determined prefetch
distance indicating the memory address which is
loaded ahead of time rather than being loaded in
prefetch distance iterations. Our experiments sug-
gest that prefetching has potential to improve GPU
program performance in certain scenarios but does
not unilaterally improve performance across all
benchmarks, motibating the need for more sophis-
ticated analysis and profile-guided optimization.s

2 Related Works

Several other works have explored unified memory
data management in hardware accelerators and
software prefetching. [2] explores the the perfor-
mance benefits of the OpenMP unified memory
in addition to designing a compiler-runtime
collaborative method to optimize Unified Memory
performance. Their pass is implemented in Clang
and the LLVM/OpenMP runtime and performs
a requisite data mapping for each input object
depending on object access density, size and reuse.
In their initial analysis of unified memory, they
demonstrate that unified memory outperforms
the traditional approach for working sets fitting
into GPU memory and particularly suffer when
working sets are oversubscribing and have a data
reuse above some threshold. With their combined
compiler-runtime approach, their pass optimizes
several benchmarks collected from the Rodinia



Suite in comparison to the traditional approach and
the unoptimized Unified Memory approach.

Jamilan et al. [1] address the limitations of tradi-
tional data retrieval methods such as deeper caches,
compile-time data locality optimizations, etc. by
implementing a novel data pre-fetching scheme
that can identify irregular memory access patterns.
If accurately performed, data pre-fetching can hide
the significant number of cache misses and ensu-
ing memory access latency present in the majority
of modern applications. Their prefetching scheme
additionally does not require impractical on-chip
metadata storage. Additionally, they demonstrate
why state-of-the-art data prefetching mechanisms
fall short of optimal performance because they fail
to prefetch blocks in a timely manner due to the
lack of dynamic information present (e.g. execu-
tion time of optimized code). Their pass, APT-GET,
realizes these optimal execution times by identify-
ing the ideal prefetch distance and prefetch inser-
tion point which are determined through a profiling
method to achieve an execution speedup of 1.30x.

3 Methods

We develop an LLVM pass that identifies all fixed-
strided memory access across functions in the input
code and inserts prefetch instructions for subse-
quent accesses. To do this, we (1) identify all loops
in the function, (2) find all load instructions in the
loop, (3) determine whether the load address is an
add recurrence on the loop induction variable, (4)
Compute the address of the memory location to
prefetch following NumPrefetchIters iterations,
(5) check if the address has already been prefetched,
and (6) insert the prefetch load instruction into the
IR.

At a high level, we first aim to identify all BIVs.
A BIV is a basic induction variable, or a variable
that is a part of a recurrence relation and whose
value is incremented by a fixed value typically
across loop iterations. A common example is the
following:

for (unsigned int i; i < N; i++) {
A[i] += 1,
}

In this example, i is a BIV because it is
incremented by a fixed value in each iteration of
the for-loop. We do not handle the case of derived
induction variables, or a variable whose increment

is a function of another variable that itself is BIV.
BIV’s are very commonly present in any loop or
strided memory access, particularly in the context
of scientific computations that are often offloaded
to a GPU. As such, our first step is to identify such
variables.

We also notably use the Scalar Evolution anal-
ysis in LLVM which can be used to identify these
BIVs by relaying whether a variable belongs to
a recurrence relation. If so, we can identify this
variable as a BIV.

4 Results

Our experiments were run on a Tesla T4 GPU on
Google Colab running Ubuntu 22.04 with Cuda
Toolkit version 11.8. We use LLVM version 18.0
installed from source with the OpenMP runtime
enabled. The GPU had 15GB RAM and the CPU
had 12GB.

We evaluate our method across three set-
tings: CPU only, GPU offloading with man-
uval data transfer, and GPU offloading with
unified memory. In each setting, we assess
the performance with and without prefetching.
Our code is available at https://github.com/
aakashdp6548/eecs583-final-project.

4.1 Benchmarks

We use two benchmarks to evaluate our method.
The first is an implementation of the standard saxpy
BLAS routine, which computes the sum of a scalar
times one vector and another vector. The C++ code
for this loop is

for (long i = @; i < N; ++i) {
y[i]l = a = x[i] + y[il;

}
There are two potential prefetch instructions in this
benchmark, the loads to x[i] and y[i].

The second benchmark is nested loop that com-
putes = | Az for a vector x and a matrix A. The C++
code for this loop is

double total = 0;
for (long i = @; i < N; ++i) {
double sum = 0;
for (long j = @; j < N; ++j) {
sum += A[i1[j1 * x[j1;
}

total += sum x x[i];


https://github.com/aakashdp6548/eecs583-final-project
https://github.com/aakashdp6548/eecs583-final-project

There are three potential prefetches in this code:
the two loads to ALi][j] and x[j] in the inner
loop, and the load to x[i] in the outer loop.

4.2 Data Size

We run the SAXPY benchmark on the CPU varying
the number of elements in the input arrays IV be-
tween 10% and 10° and investigating the outcomes
on execution time between CPU+Prefetch and stan-
dalone CPU. The raw latencies are presented in
Table 1. Figure 1 presents the time for each size nor-
malized as a percent of the time without prefetch
for that size. When the data size is small (near
109), the latency for both is so low that we see no
appreciable benefit from prefetching. However, as
the data size grows, we do see improvements from
prefetching compared to no prefetching.

100
= No Prefetch
e Prefetch
0
6 7 8 9

log of # of Elements in data

8 8 8

% of No-Prefetch Baseline Execution Time (s)

B8

Figure 1: % of Execution Time compared to No-
Prefetch Baseline vs. logyo # of Elements in Data

4.3 Prefetch Distance

We again run the SAXPY benchmark on the CPU
varying our prefetch distance from 1 to 32 itera-
tions to determine the optimal number of iterations
to look ahead in our prefetching. The results ap-
pear in Figure 2. We note that over our trials, the
optimal value of this parameter was 1 (i.e. log2(0)),
so we continued the rest of our experiments using
this value. We also note the drop-off suggesting an
efficiency gain between 2% and 2° elements, inves-
tigation of which we leave to future work due to
the possibility of multiple causes.

4.4 GPU Offloading and Unified Memory

As our main experiment, we setup our GPU
and benchmarks to support GPU offloading and
prefetching using Google Colab and compare
benchmark performance across our three modes:
CPU, GPU+Offloading, and Unified Memory.

Optimal Prefetch Distance

Execution Time (s)
@
°

0 1 2 3 4 5
Prefetch Distance (log2-scale)

Figure 2: Execution Time vs. logs # of Prefetching
Lookahead Iterations

We find that in the SAXPY benchmark, enabling
prefetching leads to a speedup in all cases. Inter-
estingly, we also find that the GPU+Offloading per-
formed the fastest of our methods, followed by the
Unified Memory, and finally the CPU. The results
of this experiment are summarized in Table 2 as
well as Figure 3. The slowdown of unified memory
compared to offloading only suggests that the addi-
tional overhead of unified memory is dominating
the performance gain; however, this is independent
of our method.

In the Nested Loop benchmark, enabling
prefetching actually leads to a slowdown in all
cases, suggesting that our compiler-based prefetch-
ing method may have been too aggressive in data se-
lection. We identify this as a symptom for the need
for more intelligent compiler-runtime frameworks
and therefore a limitation of the current prefetching
approaches, since it seems as though the overhead
of prefetching in all three cases is more expensive
than the benefits it brings. The results of this exper-
iment are also in Table 2 and Figure 4.

100
80
60
= No Prefetch
m Prefetch
40
20
0
cPU

GPU Offload
Figure 3: % of Device-Specific Baseline Execution
Time vs. Device

9% of Device-Specific Baseline Execution Time (s)

Unified Memory



log N Data Size (GB)

No Prefetch Prefetch

6 0.007451
7 0.074568
8 0.745058
9 7.450581

0.019 0.019
0.139 0.133
1.406 1.290
13.237 12.747

Table 1: Latencies (in seconds) for saxpy benchmark as a function of the number of elements N in the data. This
experiment was performed on a CPU, without using OpenMP.

saxpy Nested Loop
No Prefetch Prefetch No Prefetch Prefetch
CPU 13.237 12.747 9.178 12.706
GPU Offload 12.185 12.074 7.378 7.774
Unified Memory 12.820 12.281 6.456 8.905

Table 2: Latencies (in seconds) for saxpy and nested loop benchmarks on CPU only, GPU offloading without unified
memory, and GPU offloading with unified memory. The saxpy program used 7.45GB data and the nested loop

program used 6.70GB.

120
| I I I
0 I
cPU

GPU Offload
Figure 4: % of Device-Specific Baseline Execution
Time vs. Device

8

= No Prefetch
. Prefetch

8

% of Device-Specific Baseline Execution Time (s)
&

3

Unified Memory

5 Conclusion

Here, we demonstrate the performance gains
from a static-level analysis for GPU prefetch-
ing. We leveraged analyses already available
within LLVM in addition to identifying all
load instruction operands within general loop
structures who participate in recurrence relations
as identified by ScalarEvolution. Following the
identification of these induction variables, we
compute the appropriate prefetch distance based
on an experimentally-tuned parameter and, after
verifying that the address has not already been
identified, construct a prefetch pointer for the
prefetched load and insert this instruction into the
intermediate representation.

Our method demonstrates performance improve-

ments on particular benchmarks, namely the
SAXPY benchmark. Though our analysis only
leverages compile-time statistics, we aim to gener-
alize our performance improvements to all bench-
marks by also performing a profiling analysis as
well for application on larger benchmarking suites
(e.g. Rodinia). Moreover, further experimentation
with including additional LLVM passes upstream,
such as induction variable strength reduction, could
also lead to demonstrable performance improve-
ments across the board. Analyses such as ours can
continue to abstract away the complicated memory
transfer procedure in unified memory architecture
while also reducing the execution time for any ap-
plications containing scientific computations.

References

[1] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers,
Baris Kasikci, and Heiner Litz. 2022. Apt-get:
Profile-guided timely software prefetching. In Pro-
ceedings of the Seventeenth European Conference on
Computer Systems, pages T47-764.

[2] Lingda Li. Manage openmp gpu data environment
under unified address space.

[3] Tim Mattson and Larry Meadows. 2014. A “hands-
on” introduction to openmp. Intel Corporation.


https://doi.org/10.1007/978-3-319-98521-3_5
https://doi.org/10.1007/978-3-319-98521-3_5

	Introduction
	Related Works
	Methods
	Results
	Benchmarks
	Data Size
	Prefetch Distance
	GPU Offloading and Unified Memory

	Conclusion

