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Hierarchy in Biological and Computer Systems: A Review

Sawan Patel

Abstract

The presence of hierarchical organization in primate vi-
sion and motor function is a long-standing concept in neu-
roscience and has faced its fair share of skepticism. Though
a theory describing a hierarchical organization for func-
tion has yet to be agreed upon, a hierarchy is anatomi-
cally agreed upon. Contention largely concerns the specific
purpose of feedback signaling from higher cortical struc-
tures (IT, PFC, etc.) to lower cortical structures. Work has
been done to understand the effects of feedback in a variety
of stimulus-response experiments, but the precise nature of
stimulus representations across the visual hierarchy is also
debated when factoring the effect of context. The anatom-
ical organization of the visual and motor processing path-
ways have been adapted by models in computer vision and
robotics, respectively. In particular, this development has
revolutionized object recognition tasks in computer vision.
Functionally, however, these organizations in alternate dis-
ciplines also digress from the most recent discourse in neu-
roscience.

1. Introduction

The idea of a hierarchical organization of the visual
processing pathway first emerged following Hubel and
Wiesel’s studies of the visual cortex in cats. Generally,
they outlined the notion that receptive field properties
vary in a patterned way as one goes up the visual cortex’s
laminar organization. Here, the receptive fields of neurons
at one level of the envisioned hierarchy are constructed
by combining the inputs from neurons at the immediately
preceding level. After subsequent stages, small receptive
fields tuned to simple stimuli are combined to form larger
receptive fields tuned to more complex stimuli.

In the passing decades, more evidence has accumulated
suggesting that a strict view of a visual hierarchy, as
defined by Hubel and Wiesel, is exaggerated. However,
the notion of a loose ’hierarchy’ is still considered accu-
rate. For instance, [36] describes how visual areas (such
as V1) have several feed-forward projections to other

areas (V2, V3, MT, etc.). Additionally, the processing
pathways do adhere to several organizational principles
that provide a framework for constructing an ordered
scheme of organization. For instance, connections between
cortical areas are organized in a reciprocal fashion (e.g.
(A → B) and (B → A) for two distinct cortical areas
A,B). Additionally, within a reciprocal pair of connec-
tions, there are characteristic differences in the laminar
distributions of axonal terminations and cells of origin.
In other words, projections originating from superficial
layers and terminate in the granular layer (IV) are forward
projections and, consequently, projections that originate in
either superficial or deep layers that terminate outside of
IV (most commonly in V1 or V2) are backward projections.

The notion of hierarchy is also evidenced to exist in a
functional sense as well, where successively higher levels
of hierarchy are associated with more advanced levels
of visual analysis. It is also the generally the case that
different visual areas at the same hierarchical level are
involved in qualitatively different kinds of processing.

This idea of a hierarchical organization spread to com-
puter vision through the 1980’s and 1990’s with the de-
velopment of the neocognitron, the basis for convolutional
neural networks, and the field has since continued devel-
oping its own models to optimize performance. These op-
timizations have, in some cases, deviated from findings in
neuroscience, but several existing models continue to adapt
components of the primate visual processing pathway as
new information is uncovered. Hierarchical organization
also has a history in robotics, particularly related to the or-
ganization of the primate motor system pairing of the cen-
tral nervous system (brain, spinal cord) and the peripheries.
In this review, I summarize recent empirical findings related
to the anatomical and functional structure of primate vision
in addition to patterns connecting hierarchically-organized
models in computer vision and robotics. Future work relat-
ing the three fields by a more unified definition of hierarchy
could not only guide further research in primate vision, but
also develop more holistic and robust computer vision and
robotics models.
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2. Biological Mechanisms: Anatomy, Empiri-
cal Studies and Models

Here, I will survey across anatomical, electrophysiologi-
cal and theoretical studies of the visual processing pathway
in primate vision. These works will encompass current lit-
erature regarding the function of feedback signals and the
dynamic representations of objects in the visual processing
pathway. Across both sections, I aim to summarize the cur-
rent answer to the tradeoff between translation invariance
and progressive increase in complexity of features in the
cortical hierarchy.

2.1. Feedback Signals

It is possible to establish a topological, hierarchical
ordering of cortical areas purely based on feed-forward and
feedback connectivity. [17], through quantitative analysis
of the documented connectivity, produced an indeterminate
solution to an exact hierarchical ordering of the primate
vision network with 150,000 equally possible solutions
given the known anatomical constraints. This was due to
the lack of a measure for the hierarchical distance between
a pair of cortical areas. Interestingly, quantifying the per-
centage of supragranular labeled neurons (SLN), which is
a quantitative measure of the laminar distribution of parent
neurons of cortical projections, allows for an deterministic
solution to the connectivity problem irrespective of where
a retrograde tracer is injected in the visual processing
pathway [24]. SLN describes the percentage of parent
neurons in a labeled area that are from the supragranular
layer, following from the idea that feed-forward axonal
projections originate in superficial layers of the cortex
and terminate at the granular layer. Another study in
mice similarly examined anterogradely labeled interareal
projection patterns to match the visual areas to a consistent
sequence of five overlapping hierarchical levels [10]. This
was done by comparison of a novel metric, the optical
density ratio (ODR), which compares the optical density
of labeled axons in layers 2-4 to those in layers 1 added to
layers 2-4, for each connection. This metric is sensible as
feed-back connection terminations are much more frequent
in layer 1 than in layers 2-4, whereas terminations in layers
2-4 are very frequent in ascending projections, making
it a more accurate metric in comparison to SLN. From a
metric perspective, describing the primate visual processing
pathway, with feedback connections, as a hierarchy is more
apt than not.

2.1.1 Counterstream Theory

Though it is commonly thought that feed-forward signaling
generates receptive field properties and that feedback
streams have a modulatory role, this notion conflicts with

findings that characteristic physiological activity in higher
areas being found in early visual cortices. Therefore,
there is no operationally simple conception of ’higher’ and
’lower’ visual areas. It is more likely that the activation of
feed-forward pathways instead give rise to rapid automatic
characterization with little perceptual detail. Empty per-
cepts are later ’supplied’ by the engagement of feedback
pathways. Still, the feed-forward pathway is topologically
organized in contrast to the more diffuse presence of
feedback connections, which also are more numerous and
evident across levels of the hierarchy.

The structural asymmetries between feed-forward and
feed-back streams have led to the notion of a generative
model, such that the prediction errors ascending the hierar-
chy and predictions descending the hierarchy reiteratively
interact. This idea was originally conceived through the
foundational interareal counterstream theory, where these
two streams are segregated and converge at an area to
interact with the local processing in the cortex [35]. This
theory makes several predictions, but conflicts with studies
showing that feed-back and feed-forward streams both
involve varying proportions of cells in both supragranular
and infragranular layers (i.e. the two pathways overlap) [4]
and that pyramidal neurons projecting to lower cortical
areas should not possess axon collaterals projecting to
higher cortical areas (i.e. bi-directional connectivity) [35].

Novel studies follow the original counterstream theory
with a proposal that, in a bayesian sense, the brain utilizes
a generative model of the environment that explains am-
biguous sensory information and simultaneously predicts
future events. A trivial example is that an object’s distance
to an observer is lost when light is projected onto the retina,
so an inference has to be made given the two-dimensional
disparity of object elements in both retinas to make a best
estimate of such information. More specifically, feed-back
signaling computes expectations about the incoming
sensory stimuli to progressively lower levels of the cortex
while feed-forward signaling computes the prediction
error, which is propagated through ascending levels of the
hierarchy. Notably, evidence supporting the notion that
feed-forward signaling computes a prediction is plentiful,
namely that when presented a predictable stimuli, the
feed-forward pathway does not generate spikes, perhaps to
save on energy costs [1].

It has also been argued that this model implies the cog-
nitive penetration of vision, or that the generative models
underlying prediction can affect visual perception [27].
These predictions are derived from cognitive, affective and
contextual associations that provide important information
which fills in the gaps left by raw sensory information. The
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balance between these bottom-up and top-down signals
ought to be balanced in some way, which has been modeled
previously using an adjustable learning rate parameter
that determines the degree to which the prior expectations
of a perception affect the current perception [18]. Evi-
dence of such a tuning in primate vision has yet to be found.

2.1.2 Receptive field malleability

Another re-emerging foundational idea is that receptive
field properties are subject to top-down influences, the
nature of information conveyed by reentrant pathways,
and how the information carried by neurons depends on
behavioral context. Notably, over longer time periods, re-
ceptive fields change to accommodate alterations in visual
experience, indicating that receptive fields have contextual
influences and are more dynamic than previously thought.
This idea draws back to an older work [6] showing that
neurons in visual cortical areas can show selectivity for
complex stimulus configurations. Here, a simple stimulus
outside of the minimum response field for a parafoveal
V1 cell can have a great facilitatory or inhibitory affect a
neuron’s response when presented jointly with a stimulus in
the center of that cell’s receptive field. It is clear that neuron
responses are as dependent on characteristics of global
contours and surfaces as they are to attributes of local
features within their minimum response fields. Stimulus
selectivity here can be determined through measuring
tuning curves or mutual information (predicting stimulus
identity (in bits) given a neuron’s response).

Other examples of contextual influences on neural
selectivity are evidenced through attention [11]. In one
study, MT neurons, which characteristically respond to
moving stimuli, were associatively trained to respond well
to stationary stimuli given attentional cues. This suggests
that activity is not just reflective of an external stimulus
but also of cognitive state and stimulus associations.
Additionally, frontal eye fields retain ’memory responses’
in the absence of a visual stimulus while simultaneously
representing the locations of intended saccades.

2.1.3 Grouping as an effect of Feedback

Studies show an apparent lack of computation done in a
’forward-pass’ through the ventral visual pathway, such
as how calculations done on neural conduction velocity
demonstrate that there are only one or two spikes per
cortical area before a decision is made when performing a
classification task. This argues strongly against feed-back
processing [34]. However, experiments including a vernier
stimulus demonstrate that figure-level characteristics can

affect basic feature processing, implicating that higher
level representations have an effect on feature-level repre-
sentations. They describe the importance of grouping at
the level of our visual field, such that without it, human
object recognition cannot be understood. Grouping, in
the Gestalt context, pertains to the relating of particular
elements to an object. In this case, grouping for complex
stimuli highlights a fault in the purely feed-forward model.
A similar study showed that grouping is time-sensitive,
resulting in improved performance when a vernier-like
stimulus surrounded by objects is presented for a longer
amount of time [23]. Recent electrophysiological evidence
indicates that the additional amount of time could allow
for feed-back connections from the LOC to earlier cortical
areas, ironing out perceptual grouping and facilitating
improved classification.

These examples, and the aforementioned sections,
describe how visual hierarchy is not simultaneously feed-
forward and hierarchical in a strict sense. The ordering of
areas from an organizational perspective is more anatom-
ically correct than not, but functional differences when
presenting a diverse collection of stimuli, from simple (e.g.
parallel lines) to complex (faces, complex vernier stimuli,
etc.), are quite apparent.

2.2. Object representations in visual processing
pathway

A natural question to consider is how exactly are
objects represented throughout the visual processing
stream, as the evaluation of evolving representations
across the cortical areas might yield evidence suggesting
a hierarchical organization. However, the way objects
themselves are represented in higher-order visual areas
has been a point of controversy, despite the large number
of experimental studies. Centrally, the issue to consider
is to what degree are objects represented holistically in
a manner that captures their global, configurational as-
pects and to what degree are they represented by their parts?

2.2.1 Representations in IT

This question has been studied with particular focus to
area IT. One study recorded single neurons in the macaque
IT supporting both representations and found that a large
subset of neurons are sensitive to moderately complex
features [33] while another subset is sensitive to more
holistic representations, e.g. entire faces [12]. Interestingly,
the results from studies similar to the above in anterior
and lateral areas made it more possible to characterize the
nature of object representations via common neuroimaging
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Figure 1. Activation across visual cortical areas for different stim-
ulus configurations (full entire image, 256 full image scrambled
into 256 blocks, etc. [21]

methods, such as magentic resonance imaging (MRI). For
example, a decade later, it was found that the majority
of voxels in non-retinotopic object areas located in the
lateral occipital lobe (LOC) remain active when images of
a variety of objects are broken into scrambled blocks [16].
Such studies indicate feature-specific activation in earlier
cortical areas prior to IT. A later study confirmed that
this increasing sensitivity to feature complexity is largely
consistent across the anterior-posterior axis, beginning in
early retinotopic areas and proceeding into LOC [21]. With
an MRI-based method, the investigators charted the time
courses of activation obtained from regions showing the
highest level of scrambling selectivity with early retinotopic
areas to outline the drastically changing functional profile
of the ventral visual stream in terms of sensitivity to image
scrambling. Notably, this trend also held for non-facial
stimuli, such as cars. However, the overlap between regions
showing selectivity for face scrambling and car scrambling
was not precise, which does not rule out the possibility of
multiple hierarchical streams. The consistency of areas
like LOC in responding to different objects sharing similar
low-to-intermediate level features supports the existence of
a hierarchical scheme, nevertheless.

Time-evolution of responses to facial features In [31],
it was shown that the integration of facial information tends
to proceed from the eyes and moves down the face through
a time-series analysis of the N170 ERP signal. Notably,
the integration of facial information stops once a marker
indicating a face stimulus’s emotional state was indicated

(e.g. eyes in a ’fear’ classified facial stimulus or the mouth
in a ’happy’ classified facial stimulus). The latency of
each ERP particularly depended on the vertical distance of
expression-specific diagnostic information from the two
eyes, such that the ’eyes’ in fear would lead to an early
ERP. This process is both automatic, progressing down the
y-axis of the face plane and goal-directed, as the integration
stops once the diagnostic features have been integrated. A
follow-up study performed a similar experiment where,
on each trial, a subset of action units were selected and
combined to produce an arbitrary 3D facial animation
illustrated through four successive snapshots [19]. A
subject was tasked with categorizing the random facial
animation according to 6 possible emotions if the evolution
of the facial stimulus correlated with their own subjective
perceptual expectations of one of the particular emotions.
They showed that the action units that were systematically
expected (through analysis) early in the signaling dynamics
comprise ’biologically-adaptive’ action units, or those
which would prompt the execution of an action that would
be evolutionarily favorable (e.g. witnessing a ’jaw drop’
prompted a perception of fear/confusion). The units that
were expected later on in the dynamics comprise their diag-
nostic for categorizing the six classical emotions [13]. This
reflects an evolving hierarchy of information over time,
where the initial expressions elicit systematic confusions
before later supporting accurate categorizations of the six
categories of emotion. More generally, the prediction of
the timing for signal transmission could present an adaptive
advantage for autonomic responses (e.g. ’fight or flight’).
In the wild, processing certain facial signals that yield
some form of critical information earlier on could result
in quicker decision-making in potentially life-threatening
situations. For instance, these facial signals could have
evolved as rapid behaviors to enhance sensory advantages
(e.g. rapid muscle contractions protecting the eyes, or
wrinkling the nose and mouth to reject noxious smells).

Context-dependence in IT As described in the vernier
stimulus examples, context plays a critical role in visual ob-
ject recognition. Notably, the regularity of our experiences
of objects within environments and with each other can
provide a rich environment that influences our recognition
of objects and their categories. For instance, a face itself
is embedded in a contextually rich environment, as it is
accompanied by two ears and is attached via neck to a body.
It has generally been found that neurons critical for face
perception do not respond to these accompanying features.
However, IT studies evaluate face-selectivity by presenting
faces in isolation rather than as they typically appear.
In studies where the activations of cortical regions has
been examined when considering contextually-supported
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faces, it has been shown that face-selective IT neurons
respond not only to images of faces, but to parts of an
image where contextual clues indicate a face ought to
be, even in its absence. [3] recorded simultaneously from
middle lateral and posterior lateral ’face-selective’ patches
of neurons in rhesus monkeys. In one experiment, they
presented complex scenes that lacked faces but contained
cues indicating where a face ought to be, such as a body.
The middle lateral face cells responded to the parts of the
images where the face would have been located, even when
the faces were occluded and not just absent. However, the
latency of response was slower than responses for intact
faces by 30ms. Another experiment entailed presenting
images where a non-face object was present in an image
twice, once above a body and once not. Responses to
the non-face object positioned above a body were larger
than responses to the same object when not positioned
above a body, both at the population level and in indi-
vidual channels. They also found that responses to faces
above bodies were indistinguishable from responses to
disembodied faces, indicating that the presence of bodies
within the receptive field of face-selective neurons only
provides a supporting role. The above illustrates how
IT neurons do not code objects and complex shapes in
isolation. Rather, evidence suggests that these neurons are
sensitive to statistical regularities of cumulative experience.
The facilitation of face-selective neurons when a clear face
is not even present reflects a lifetime of experience where
bodies are usually accompanied by faces. The retinotopic
spatial regularity between bodies and faces might explain
why face and body ’patches’ often emerge in adjacent parts
of the visual cortex. Interestingly, the group reported that
the posterior lateral responses always preceded the middle
lateral responses, in both the clear face and occluded face
conditions. Given the anatomical organization of the two
patches, it is unlikely that the described ’body-facilitation’
is an effect of feedback signaling.

2.2.2 Abstract representations of faces

Further concerning area IT, what about abstract facial
stimuli? That is, to what degree does the highest level of
the ventral visual pathway distinguish between face-like
stimuli and actual faces, if at all? Face pareidolia, the
attribution of real face traits to non-face objects due to
illusory perceptions, can erroneously activate a connection
between visual input areas and internal representations
of faces. Naturally, the fusiform-face area (FFA) plays
a crucial role in the perception of both actual faces and
illusory face perceptions. In an fMRI study where several
volunteers were presented grayscale instances of real faces,
face pareidolia and scrambled images, both real face and

face-pereidolia specific activation was found across FFA,
prefrontal cortex (PFC) and V1/V2 [2]. The asynchronous
conjunction of PFC and early occipitotemporal activity
suggests that there is some coordination of bottom-up
and top-down processing in either case. It has also been
suggested that the bilateral activation of FFA could result
from the expectation of seeing faces rather than from the
actual face pareidolia perception [14]. The procedure did
not allow for an accurate determination of the temporal
ordering of activations across different areas.

Pareidolia provides an interesting set of stimuli to test
the counterstream theory, as the bilateral activation of
the FFA could reflect a forward-pass ’correction’ of the
expectation that a face stimulus is going to be presented.
This feed-back signaling, perhaps originating in PFC and
descending to the FFA, is potentially overwritten by the
feed-forward confirmation through raw sensory information
that the stimulus is not in fact a face. An analysis of the
temporal dynamics through a more powerful fMRI method
could clarify the precise ordering of activation across the
upper-cortical regions in the visual processing pathway.

3. Models in Computer Vision and Robotics
Older models in computer vision for object recognition

drew from the ideas of David Marr, that what we see is a
fully elaborated diagram of a visual scene by a transfor-
mation from two-dimensional input data projected onto
the retina into a three-dimensional spatio-temporal model.
These ideas connected directly to Hubel and Wiesel’s strict,
feed-forward hierarchical processing proposal. However,
recent models have begun to relax these assumptions, in
light of the prevalence of back-propagations, the impor-
tance of attention in guiding visuo-motor collaboration and
integrating motion information to simplify computation in
recognition tasks.

3.1. Overview of Models

Optical Flow In [22], the authors demonstrate a novel
technique (appearance-motion decomposition, AMD) for
zero-shot segmentation on novel images by segment flow
constructed from a a motion network output for two consec-
utive frames and a segmentation network that produces a set
of relevant object masks. These segment flows are warped
into a predicted image of the second of the consecutive im-
ages, and the model is trained to minimize the error of the
prediction and the actual image. Though this method devi-
ates from strategies thought to be used by humans for seg-
mentation (i.e. processing of features with progressively in-
creasing complexity), it could be extended to implement an
attentional mechanism with a focus on dynamically chang-
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ing areas between successive frames when presented with
a collection of frames in a video instead of just two. A
similar work has since combined the strengths of motion-
based and appearance-based segmentation by supervising
an image segmentation network with the task of predicting
regions likely to harbor simple motion patterns [9]. The use
of motion data for supervision allows for segmentation in
videos and in still images without the need for manual an-
notation.

Attention-Dependent Models [8] leverages a novel at-
tention mechanism for fixation, a retina-inspired approach
to pixel sampling, and a network architecture inspired
by the ventral visual stream to produce a model that is
resistant to commonly-found adversarial images/classes in
typical classification approaches. This approach not only
generalizes performance to possible adversarial examples
with adaptive eye movement, but presents a method for
augmenting a training set via retinal sampling, which
naturally results in a selection of distorted views from a
particular input image. This method could be integrated
into any existing model architecture with little difficulty
following a modification of the described ventral pathway.
The exact architecture described in this paper resulted in
sub-par performance compared to similar architecture using
a different pixel sampling method, which they attribute to
the differences between images contained in object recog-
nition datasets (e.g. ImageNet) and naturalistic images. For
example, objects of interest in naturalistic images are often
a fragment of the entire visual field, whereas the target
object in the majority of object recognition datasets takes
up the majority of the image.

Recurrency The presence of recurrency in human object
recognition is well-documented, with recent work investi-
gating the temporal dynamics of signaling during modified
object recognition tasks [26, 30, 37]. Appropriately,
papers in computer vision have implemented recurrency
across several architectures. [32] describes a series of
network architectures that incorporate any combination of
feed-forward, lateral and recurrent connections which are
tested against modifications of the MNIST dataset, one of
which tests model resistance to a form of occlusion. The
most complex model described features, at any one layer,
lateral connections between all units in one layer, recur-
rent connections to the previous layer and feed-forward
connections to the subsequent layer, all of which are im-
plemented via deconvolution/convolution. This particular
architecture demonstrated the best performance across
all developed architectures, including performance on the
debris occlusion data. If the desire is to explicitly replicate
biological signaling and performance, [20] describes the

deployment of CORnet-S, a shallow four-layer network
that held the largest Brain-Score (a benchmark composed
of neural recordings and behavioral measurements) of
all submitted base models. Each layer in this network is
anatomically mapped to a critical region in primate ventral
visual pathway (V1, V2, V4, IT), and it terminates with a
linear decoder that maps the network output to the output
behavioral choices. Each layer is mapped to the subsequent
layer via convolution, with kernels of differing parameters.
Recurrence is implemented by passing the output of one
particular layer back to itself several times. The Brain-
Score metric specifically measures how well models can
predict (a) mean neural response for each neural recording
site to each tested naturalistic image in non-human primate
V4 and IT, (b) mean-pooled human choices when reporting
a target object in each naturalistic image, and (c) when
object category is resolved in non-human primate IT. Per-
formance was compared across a variety of architectures
(e.g. AlexNet, ResNet, DenseNet, MobileNet, Inception,
etc.), and CORnet-S achieved the highest performance. It
should be understood that the direct comparison of network
responses to mean neural responses for each input may not
be a relevant factor in the pure task of object recognition,
however. Since, several architectures (many of which are
built off of ResNet) have surpassed CORnet-S.

Summary The use of motion information for supervision
aligns with the counterstream theory’s proposed dichotomy
of the visual processing pathway, as the brain areas harbor-
ing neurons sensitive to optic flow are higher cortical re-
gions (e.g. V2, V3A, V4, MT, etc.) that are outputs for feed-
forward signaling. Each of these regions shows a degree of
functional sensitivity by motion type (e.g. local vs global,
self vs object motion, radial vs rotational vs translational
flow, etc.). Additionally, the simulation of attention mecha-
nisms by sampling fixation points with the highest saliency
to direct focus onto particular patches of an input image di-
rectly mirrors the saccadic mechanisms controlled by the
superior colliculus and frontal eye fields. This is also paired
with graded retinal sampling to avoid the stereotypically flat
sensory input characteristic of CNNs. Another welcome
progression is the implementation of recurrency in typical
recognition models of various designs. In many cases, the
degree of recurrency pales in comparison to that found in
primate visual anatomy but certainly demonstrate more than
adequate performance. Surveying across all models shown
on Brain-Score demonstrates the importance of recurrency,
though these models do not strictly boast the same perfor-
mance gains as models designed without precisely mirror-
ing neural recordings in mind.
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3.2. Pooling mechanisms

The precise mechanism for pooling in the primate visual
recognition pathway is unclear. However, advances in
pooling mechanisms in computer vision provide several
benefits over the simple max-pooling or mean-pooling
mechanisms as information loss is apparent in either
case. [15] proposes multi-scale order-less pooling (MOP),
which extracts local patches at a single scale and then
pools them over regions of increasing scale. The output
following the extraction of patches of each feature map
results in one map of the entire image. [5] demonstrates a
genetic pooling algorithm. Here, a population of attentional
weights are generated randomly between the interval [0,
1] in the first generation. The model is trained for each
set of attention weights in the population and error is
calculated through the corresponding loss functions. Then
through generations, these attention weights are optimized
to achieve minimum loss.

3.3. Representation learning

Another application of visual hierarchy can be found in
representation learning. A good representation is typically
characterized as capturing multiple configurations from
the input and can also organize the explanatory factors of
the input into a hierarchy (with more abstract concepts
at the top). Many deep neural networks fail at learning
reliable representations as they are heavily dependent on
the training objective (e.g. may focus on shapes and parts
of objects in an object recognition task but not rotation).
The discriminative features learned from solving high-level
image classification tasks might not be appropriate for mid
and low-level tasks, which reduces their transferability.
Generative adversarial networks (GANs) have been found
to encode rich hierarchical semantics in layer-wise rep-
resentations, but are limited in that they are designed for
image generation and not inference (e.g. taking an image
and extracting its features). In [38], the authors show that a
pre-trained GAN can be considered as a learned loss func-
tion, which is combined with a novel hierarchical encoder
whose outputs align with the layer-wise representations of
the generator. The generator therefore takes the feature
hierarchy produced by the novel encoder as per-layer inputs
and supervises the encoder by reconstructing the original
input image into features called generative hierarchical
features. This methodology can be applied to a wide range
of discrimination tasks, achieving near-top performance on
digit recognition tasks, face verification and on ImageNet.
They find that features at lower levels are more suitable for
lower level tasks (e.g. luminance regression) and those at
higher levels are better suited for higher-level tasks (e.g.
pose estimation).

3.4. Motor hierarchy

Hierarchical processing is also evident in robotics. The
task is compared to reaching in a biological organism,
whereby the nervous system integrates different sensory
modalities and coordinate multiple degrees of freedom
in the human arm to achieve the feat. However, many
challenges are present: the noise and transport delays in
neural signals, fatigable muscles and unpredictable envi-
ronmental disturbances. Despite this, the task can still be
accomplished. Notably, there is a hierarchical organization
of neural structures underlying movement, where each layer
performs a specific function that increases in abstraction.
Additionally, there is evidence that there are independent
’lower levels’ of this organization (e.g. spinal cord) capable
of relatively complex motor behaviors independent of the
higher levels, such as cats with transected spinal cords
capable of learning to walk on a treadmill. This proposed
hierarchical paradigm is therefore accompanied with many
questions, such as each level’s function, their limits and if
the existence of a global hierarchy is even accurate.

The idea of hierarchical architectures in robotics has
existed since the proposal of subsumption architecture [7].
Here, a collection of layers that each specify a behavior
pattern for a robot each consisting of a network of ’message
passing augmented finite state machines.’ Each augmented
FSM has a set of registers and a set of synchronized timers
connected to a typical FSM that can control a combinatorial
network fed by the registers. The arrival of a message to
the network can trigger a change in the interior FSM. This
machine can be further augmented by adding new machines
that can provide input to each other via registers capable of
inhibition or excitation. Robots incorporating this type of
model are capable of walking, load balancing, and several
other behaviors.

Recently, hierarchical architectures currently allow
for the modularization and simplification of individual
controllers and training procedures. Each subsystem deals
with a fraction of the incoming sensory information and can
be trained separately with its own distinct cost functions
and performance requirements. These sorts of models are
far more flexible than ’flat’ non-hierarchical controllers
that simultaneously process all sensory information and
directly calculate behavioral output. In [25], the authors
explore a series of distinct, hierarchically organized models
of arm control built of multiple cascading layers of simple
proportional and proportional-derivative feedback loops
with low-pass filtering [28, 29]. This work adapts such
proposed hierarchical control architecture to a 4 DOF robot
arm to explore its theoretical capabilities in deployment.
They demonstrate several fundamental invariant properties
found in human hand trajectories, such as isochrony, bell-
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(a) Information loss from a max-pooling motif when inputs in
the sampled space are roughly equivalent to maximum value.

(b) Information loss from a mean-pooling motif when inputs
in the sampled space share a high degree of variance.

shaped velocity profiles, and the speed-curvature power
law, which are also found in the robot arm trajectories
without planning or optimization. This architecture is also
able to spontaneously adapt in behavior whenever its wrist
joint is blocked, if the visual field is rotated with respect to
the arm, and when the robot hand is extended by a tool.

4. Conclusion
Though all of the aforementioned models, save for [8],

deviate greatly from the most well-respected models of
primate visual hierarchy, they each incorporate unique
elements of counterstream theory and modularity. Primate
vision is still not fully understood, most notably the precise
mechanism underlying the tuning of feedback influences
on visual perception. However, the general notion of a
hierarchical organization across vision and motor systems
produces adaptive gains across several tasks and provides
the flexibility to design independent modules for processing
across a variety of different tasks, many of which are reused
and many of which are not required depending on the task.
A promising area of future research in neurophysiology that
would undoubtedly benefit computer vision is the precise
pooling mechanisms utilized from one ’level’ of a the
hierarchy to the next for the ascending pathway. Though
spatial resolution across several areas is a challenge for
current methods that allow for the temporal resolution
required to measure representations at the level of spikes,
further work in this area could both confirm the near-serial
processing in the prediction-error computation mechanism
and provide models in computer vision a novel pooling
mechanism that has been tested by evolution.
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